If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (1 + x2) * su + (1 + y2) * dx = 0 Reorder the terms for easier multiplication: su(1 + x2) + (1 + y2) * dx = 0 (1 * su + x2 * su) + (1 + y2) * dx = 0 (1su + sux2) + (1 + y2) * dx = 0 Reorder the terms for easier multiplication: 1su + sux2 + dx(1 + y2) = 0 1su + sux2 + (1 * dx + y2 * dx) = 0 1su + sux2 + (1dx + dxy2) = 0 Reorder the terms: 1dx + dxy2 + 1su + sux2 = 0 Solving 1dx + dxy2 + 1su + sux2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Add '-1su' to each side of the equation. 1dx + dxy2 + 1su + -1su + sux2 = 0 + -1su Combine like terms: 1su + -1su = 0 1dx + dxy2 + 0 + sux2 = 0 + -1su 1dx + dxy2 + sux2 = 0 + -1su Remove the zero: 1dx + dxy2 + sux2 = -1su Add '-1sux2' to each side of the equation. 1dx + dxy2 + sux2 + -1sux2 = -1su + -1sux2 Combine like terms: sux2 + -1sux2 = 0 1dx + dxy2 + 0 = -1su + -1sux2 1dx + dxy2 = -1su + -1sux2 Reorder the terms: 1dx + dxy2 + su + sux2 = -1su + su + -1sux2 + sux2 Combine like terms: -1su + su = 0 1dx + dxy2 + su + sux2 = 0 + -1sux2 + sux2 1dx + dxy2 + su + sux2 = -1sux2 + sux2 Combine like terms: -1sux2 + sux2 = 0 1dx + dxy2 + su + sux2 = 0 The solution to this equation could not be determined.
| -7m=4.2 | | 9-6x=-9 | | 11x+6y=60 | | z-11=-10 | | -5(3z+7)= | | -7+n=6 | | -8h^3*4h^2= | | 7p^2=8 | | 18+8x=74 | | -9[6+9(-8+9)]+12= | | -p-6=5p | | q+10=94 | | y=-5(320)+16 | | 28+8x=74 | | x^5-6x^4+11x^3+16x^2-50x+52=0 | | y=-5(160)+16 | | 8(2t+3)-3(5-s)+14t= | | 4(25x^2-90x+81)=49 | | -3x+2(2x-3)=-1-4x | | y=-5(0)+16 | | m-8=82 | | 4t-2x=32 | | t=11.50h | | 17+3=4b | | 12t+1=25 | | x-.075x=y | | 5x-22=-12 | | y=(t-1)3 | | 2(5x+4)=8x+2 | | 3y^2+4y^2= | | -2x^2+13x-15=00 | | -x+14=X-2 |